Continuum-Based Math Phases 1 and 2 Task: Quantity

PURPOSE:
MATERIALS:
INSTRUCTIONS:

Quantity Columns 1 to 7
General purpose counters i.e., two-coloured counters, pattern blocks, etc.

This is a one-on-one teacher/student interview. It should be completed in some privacy, away from other students. It is important that the script be followed in a precise manner, with little or no teacher help. Teachers may provide some clarification, but should not deviate from the overall goal of each task. Students should demonstrate a 'mastery' of each task. Partially correct answers should not be marked as correct.

 General Question for Student	Teacher 'Look Fors' Students should demonstrate complete understanding	Column		
1. Have each of the Quantity Diagnostic Sheets A, B and C on the table in front of you but face down. Tell the student that they have to tell you how many things are on the sheet when you turn them over but warn them that they have to be quick! Make sure that when you do turn the sheet over it is only for a second before you turn it over again.	Does the student subitise accurately? Or does the student attempt to count but runs out of time? If you can tell a student is quickly counting then he/she doesn't get a check.	If correct check column 1		
2. Using Quantity Diagnostic Sheets D, E and F, ask				
the student to point to all the boxes that have 'this'				
many stars. Do not say " 5 " or " 8 " or "4". It is OK				
for students to count the objects as opposed to				
subitise them.				Does the student point to all the correct boxes? Or does the student
:---				
point to only one correct box or make no attempt to count or just				
guesses?	\quad	If correct check		
:---				
column 2				

Teacher Instructions \& General Question for Student	Teacher 'Look Fors' Students should demonstrate complete understanding	Diagnostic Task - Chart \#
5. Put 11 counters in front of the student and ask "How many counters are here?" If they give the correct answer, put 4 more counters with the group and ask "How many are here now?"	Does the student count on i.e. say $12,13,14,15$? Or does the student recount the whole group again i.e. he/she doesn't trust the count? Only give a check if the student counts on.	If correct check column 5
6. Arrange 13 counters in 2 rows: 000000 0000000 Ask the student to count the counters by $\mathbf{1 s}$ and then 2s. Then ask "Does counting by 2s give you the same answer as counting by 1 s ?"	Does the student count by 2 s correctly (i.e. "2, 4, 6, 8, 10, 12, 13)? and also understand that skip counting gives the same quantity as counting by ones? Or does the student skip count incorrectly (i.e. 2, 4, 6, 8, 10, 12, 14 or $2,4,6,8, \ldots, 22,24,26)$? Note the difference between counting by 2 s and counting by 2 s to find a quantity.	If correct check column 6
7. Use 12 counters. Ask the student to find as many different ways as they can of finding two (or more!) numbers that add to give 12.	Does the student think, say, write, or show at least five different ways (e.g. $10+2,6+6,11+1,9+3,8+4,7+5$ etc.)? Or do they just give one or two ways (usually $10+2$ and $6+6$)? Note that this column is about seeing that a number can be concretely split.	If 5 or more correct examples check column 7

Teacher Notes:

Quantity Diagnostic Sheet C

Point to all the boxes that have this many stars
Quantity Diagnostic Sheet D

Point to all the boxes that have this many pumpkins
\square

